👤

DAU COROANA

Aflati suma S=1+[tex]\frac{1}{5}[/tex]+[tex]\frac{1}{5^{2} }[/tex]+...+[tex]\frac{1}{5^{11} }[/tex]


Răspuns :

[tex]\it \dfrac{..}{..}\ \ b_1+b_2+b_3+\ ...\ +b_n= b_1\cdot\dfrac{q^n-1}{q-1}\\ \\ \\ 1+\dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+\ ...\ +\dfrac{1}{5^{11}}=\ \dfrac{\ \dfrac{1}{5^{12}}-1}{\dfrac{1}{5}-1}=\dfrac{5^{12}-1}{5^{12}}\cdot\dfrac{5}{4}=\dfrac{5^{12}-1}{4\cdot5^{11}}[/tex]

Răspuns:

aplici formula invatata pe 1+x+x²+...+x^n

Explicație pas cu pas:

(1-(1/5)^12)/(1-1/5) =((5/4)*(5^12-1))/5^12)=(5^13-5)/4*5^12=(5^12-1)/4*5^11=

5/4-1/(4*5^11)

Vă mulțumim pentru vizita pe site-ul nostru dedicat Matematică. Sperăm că informațiile furnizate v-au fost utile. Dacă aveți întrebări suplimentare sau aveți nevoie de ajutor, nu ezitați să ne contactați. Vă așteptăm cu drag și data viitoare! Nu uitați să adăugați site-ul nostru la favorite!


Ze Learnings: Alte intrebari