👤

2 3 n
S= log x + log X + log X+…+log X
3 3 3 3
X>0, n€N


Răspuns :

Răspuns:

Explicație pas cu pas:

Metaoda 1: folosim proprietatea logaritmului:

[tex]log_{a} x^b = b*log_{a} x[/tex]

asadar:

[tex]log_{3} x + log_{3} x^2 + log_{3} x^3 + ... + log_{3} x^n =[/tex]

[tex]=log_{3} x + 2*log_{3} x + 3*log_{3} x + ... + n*log_{3} x =[/tex]

[tex]=log_{3} x *(1 + 2 + 3 + ... + n)=[/tex]

[tex]=log_{3} x *\frac{n*(n+1)}{2}= \frac{n*(n+1)}{2}*log_{3} x = log_{3} x ^\frac{n*(n+1)}{2}[/tex]

Metaoda 2: folosim proprietatea logaritmului:

[tex]log_{a} x^b = b*log_{a} x[/tex]

asadar:

[tex]log_{3} x + log_{3} x^2 + log_{3} x^3 + ... + log_{3} x^n =[/tex]

[tex]=log_{3} x + 2*log_{3} x + 3*log_{3} x + ... + n*log_{3} x =[/tex]

[tex]=log_{3} x *(1 + 2 + 3 + ... + n)=[/tex]

[tex]= log_{3} x ^\frac{n*(n+1)}{2} = \frac{n*(n+1)}{2}*log_{3} x[/tex]

Răspuns:

Explicație pas cu pas:

Vezi imaginea LAURA